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1 Frattini’s Argument and Characterizations of Nilpotent
Groups

1.1 Frattini’s argument

Theorem 1.1 (Frattini’s argument). Let G be a finite group, N E G, and let P be a Sylow
p-subgroup of N . Then G = NNG(P ).

Proof. If g ∈ G, then gPg−1 ≤ N (since N E G). So gPg−1 is Sylow p in N , and
therefore, there exists some n ∈ N such that gPg−1nPn−1. Then n−1g ∈ NG(P ). So
g ∈ NNG(P ).

1.2 Characterizations of nilpotent groups

Theorem 1.2. Let G be a finite group. The following are equivalent:

1. G is nilpotent.

2. If H < G, then H < NG(H).

3. If P ∈ Sylp, then P E G.

4. G ∼=
∏

p prime Pp, where Pp is a Sylow p-subgroup.

5. If M < G is a maximal proper subgroup (not contained in any other proper subgroup),
then M E G.

Proof. (1) =⇒ (2): Suppose N < G. If HZ(G) = G¡ then G = NG(H), so H <
NG(H). If HZ(G) 6= G, NG(HZ(G)) = NG(H), so we may assume that Z(G) ≤ H
(replace H by HZ(G)). Now H/Z(G) < G/Z(G). If G has nilpotence class n, then
G/Z(G) has nilpotence class ≤ n − 1. By induction, H/Z(G) < NG/Z(G)(H/Z(G)). This
is NG(H)/Z(G), so H < HG(H).
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(2) =⇒ (3): If G is a p-group, then G E G, so we are done. If G is not a p-group, let
P ∈ Sylp(G) with P < G. Then P E N = NG(P ), and P < N . P is unique of its order,
so it is characteristic in N . So P E NG(N). So N = NG(N). By (2), N = G. So P E G.

(3) =⇒ (4): This is the Krull-Schmidt theorem.
(4) =⇒ (5): Let M < G be maximal, and suppose that p1, . . . , ps are the distinct

primes dividing |G|. If s = 1, then Sylow’s theorems give us a subgroup of order pn−1

normal in G, where |G| = pn. If s > 1, let P1, . . . , Ps be our Sylow p-subgroups. For
M < G is maximal, we claim that there exists a unique i such that M ∩Pi 6= Pi. Existence
is clear, and for uniqueness, M < MPi = G, which forces M ∩ Pj = Pj for all j 6= i. Then
M ∼= (M ∩ Pi)×

∏
j 6=i Pj . Sylow’s theorems imply that M ∩ Pi E Pi, so M E G.

(5) =⇒ (3): Let P ∈ Sylp(G) with P 6E G. Then NG(P ) ≤ M < G, where M is
maximal. Then M E G, and P ∈ Sylp(M). By Frattini’s argument, G = MNG(P ) = M .
This is a contradiction.

(4) =⇒ (1): G ∼=
∏s

i=1 Pi. Since p-groups are nilpotent, G is nilpotent.

Proposition 1.1. Let G be nilpotent, and let S ⊆ G with image generating Gab =
G/[G,G]. Then S generates G.

Proof. Proceed by induction on the nilpotence class n. If n = 1, then G = Gab. If
n ≥ 2, then (G/Gn)ab ∼= G/(GnG2) ∼= Gab. By induction, im(S) generates G/Gn. If
H = 〈S〉 ≤ G, then G = GnH. Gn ≤ Z(G), so NG(H) = G. So H E G. Then Gn =
[Gn−1, G] = [Gn−1, GnH] = [Gn−1, H] ≤ H (since H E G). So G = GnH = H = 〈S〉.

Theorem 1.3. If p is prime, then there exist exactly 2 isomorphism classes of nonabelian
groups of order p3, represented by

1. if p = 2, D4 and Q8,

2. if p is odd, Heis(Z/pZ) ∼= (Z/p2Z)2 o Z/pZ and

K =

{[
a b
0 1

]
∈ GL2(Z/p2Z) : a ≡ 1 mod p

}
∼= Z/p2Z oϕ Z/pZ,

where ϕ(1) is multiplication by 1 + p.

Remark 1.1. Heis(Z/2Z) ∼= D4. For p odd, Heis(Z/pZ) has no elements of order p2.1 1 0
0 1 1
0 0 1

p

=

1 p
(
p
2

)
0 1 p
0 0 1

 =

1 0
(
p
2

)
0 1 0
0 0 1

 .
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1.3 Linear groups

Lemma 1.1.

|GLn(Fq)| = (qn − 1)(qn − q) · · · (qn − qn−1) = qn(n−1)/2
∏
i=1

n(qi − 1).

|SLn(Fq)| = qn(n−1)/2
∏
i=2

n(qi − 1).

Proof. For the order of GLn(Fq), we have qn − 1 choices for the first column, then qn − q
choices for the second columns, etc. since the columns must be linearly independent.

For SLn(Fq), we quotient out by the determinant map, which is onto F×p .

Definition 1.1. The projective special linear group is PSLn(F ) = SLn(F )/Z(SLn(F )).

Proposition 1.2.
SLn(F ) = 〈{Ei,j(α) : α ∈ F, i 6= j}〉
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