Math 210A Lecture 21 Notes

Daniel Raban

November 19, 2018

1 Frattini's Argument and Characterizations of Nilpotent Groups

1.1 Frattini's argument

Theorem 1.1 (Frattini's argument). Let G be a finite group, $N \leq G$, and let P be a Sylow p-subgroup of N. Then $G = NN_G(P)$.

Proof. If $g \in G$, then $gPg^{-1} \leq N$ (since $N \leq G$). So gPg^{-1} is Sylow p in N, and therefore, there exists some $n \in N$ such that $gPg^{-1}nPn^{-1}$. Then $n^{-1}g \in N_G(P)$. So $g \in NN_G(P)$.

1.2 Characterizations of nilpotent groups

Theorem 1.2. Let G be a finite group. The following are equivalent:

- 1. G is nilpotent.
- 2. If H < G, then $H < N_G(H)$.
- 3. If $P \in Syl_p$, then $P \trianglelefteq G$.
- 4. $G \cong \prod_{p \text{ prime}} P_p$, where P_p is a Sylow p-subgroup.
- 5. If M < G is a maximal proper subgroup (not contained in any other proper subgroup), then $M \leq G$.

Proof. (1) \implies (2): Suppose N < G. If $HZ(G) = G_{i}$ then $G = N_{G}(H)$, so $H < N_{G}(H)$. If $HZ(G) \neq G$, $N_{G}(HZ(G)) = N_{G}(H)$, so we may assume that $Z(G) \leq H$ (replace H by HZ(G)). Now H/Z(G) < G/Z(G). If G has nilpotence class n, then G/Z(G) has nilpotence class $\leq n - 1$. By induction, $H/Z(G) < N_{G/Z(G)}(H/Z(G))$. This is $N_{G}(H)/Z(G)$, so $H < H_{G}(H)$.

(2) \implies (3): If G is a p-group, then $G \leq G$, so we are done. If G is not a p-group, let $P \in \operatorname{Syl}_p(G)$ with P < G. Then $P \leq N = N_G(P)$, and P < N. P is unique of its order, so it is characteristic in N. So $P \leq N_G(N)$. So $N = N_G(N)$. By (2), N = G. So $P \leq G$. (3) \implies (4): This is the Krull-Schmidt theorem

(3) \implies (4): This is the Krull-Schmidt theorem.

(4) \implies (5): Let M < G be maximal, and suppose that p_1, \ldots, p_s are the distinct primes dividing |G|. If s = 1, then Sylow's theorems give us a subgroup of order p^{n-1} normal in G, where $|G| = p^n$. If s > 1, let P_1, \ldots, P_s be our Sylow p-subgroups. For M < G is maximal, we claim that there exists a unique i such that $M \cap P_i \neq P_i$. Existence is clear, and for uniqueness, $M < MP_i = G$, which forces $M \cap P_j = P_j$ for all $j \neq i$. Then $M \cong (M \cap P_i) \times \prod_{j \neq i} P_j$. Sylow's theorems imply that $M \cap P_i \leq P_i$, so $M \leq G$.

(5) \implies (3): Let $P \in \text{Syl}_p(G)$ with $P \not\leq G$. Then $N_G(P) \leq M < G$, where M is maximal. Then $M \leq G$, and $P \in \text{Syl}_p(M)$. By Frattini's argument, $G = MN_G(P) = M$. This is a contradiction.

(4) \implies (1): $G \cong \prod_{i=1}^{s} P_i$. Since *p*-groups are nilpotent, *G* is nilpotent.

Proposition 1.1. Let G be nilpotent, and let $S \subseteq G$ with image generating $G^{ab} = G/[G,G]$. Then S generates G.

Proof. Proceed by induction on the nilpotence class n. If n = 1, then $G = G^{ab}$. If $n \ge 2$, then $(G/G_n)^{ab} \cong G/(G_nG_2) \cong G^{ab}$. By induction, $\operatorname{im}(S)$ generates G/G_n . If $H = \langle S \rangle \le G$, then $G = G_nH$. $G_n \le Z(G)$, so $N_G(H) = G$. So $H \le G$. Then $G_n = [G_{n-1}, G] = [G_{n-1}, G_nH] = [G_{n-1}, H] \le H$ (since $H \le G$). So $G = G_nH = H = \langle S \rangle$. \Box

Theorem 1.3. If p is prime, then there exist exactly 2 isomorphism classes of nonabelian groups of order p^3 , represented by

- 1. if p = 2, D_4 and Q_8 ,
- 2. if p is odd, $\operatorname{Heis}(\mathbb{Z}/p\mathbb{Z}) \cong (\mathbb{Z}/p^2\mathbb{Z})^2 \rtimes \mathbb{Z}/p\mathbb{Z}$ and

$$K = \left\{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \in \operatorname{GL}_2(\mathbb{Z}/p^2\mathbb{Z}) : a \equiv 1 \mod p \right\} \cong \mathbb{Z}/p^2\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/p\mathbb{Z},$$

where $\varphi(1)$ is multiplication by 1 + p.

Remark 1.1. Heis $(\mathbb{Z}/2\mathbb{Z}) \cong D_4$. For p odd, Heis $(\mathbb{Z}/p\mathbb{Z})$ has no elements of order p^2 .

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^p = \begin{bmatrix} 1 & p & \binom{p}{2} \\ 0 & 1 & p \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \binom{p}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

1.3 Linear groups

Lemma 1.1.

$$|\operatorname{GL}_{n}(\mathbb{F}_{q})| = (q^{n} - 1)(q^{n} - q) \cdots (q^{n} - q^{n-1}) = q^{n(n-1)/2} \prod_{i=1}^{n} (q^{i} - 1).$$
$$|\operatorname{SL}_{n}(\mathbb{F}_{q})| = q^{n(n-1)/2} \prod_{i=2}^{n} (q^{i} - 1).$$

Proof. For the order of $\operatorname{GL}_n(\mathbb{F}_q)$, we have $q^n - 1$ choices for the first column, then $q^n - q$ choices for the second columns, etc. since the columns must be linearly independent.

For $\mathrm{SL}_n(\mathbb{F}_q)$, we quotient out by the determinant map, which is onto \mathbb{F}_p^{\times} .

Definition 1.1. The projective special linear group is $PSL_n(F) = SL_n(F)/Z(SL_n(F))$.

Proposition 1.2.

$$\operatorname{SL}_n(F) = \langle \{ E_{i,j}(\alpha) : \alpha \in F, i \neq j \} \rangle$$